Making texture descriptors invariant to blur
نویسندگان
چکیده
Besides a high distinctiveness, robustness (or invariance) to image degradations is very desirable for texture feature extraction methods in real-world applications. In this paper, focus is on making arbitrary texture descriptors invariant to blur which is often prevalent in real image data. From previous work, we know that most state-of-the-art texture feature extraction methods are unable to cope even with minor blur degradations if the classifier's training stage is based on idealistic data. However, if the training set suffers similarly from the degradations, the obtained accuracies are significantly higher. Exploiting that knowledge, in this approach the level of blur of each image is increased to a certain threshold, based on the estimation of a blur measure. Experiments with synthetically degraded data show that the method is able to generate a high degree of blur invariance without loosing too much distinctiveness. Finally, we show that our method is not limited to ideal Gaussian blur.
منابع مشابه
Blur invariant pattern recognition and registration in the Fourier domain
Pattern recognition and registration are integral elements of computer vision, which considers image patterns. This thesis presents novel blur, and combined blur and geometric invariant features for pattern recognition and registration related to images. These global or local features are based on the Fourier transform phase, and are invariant or insensitive to image blurring with a centrally s...
متن کاملFace and texture image analysis with quantized filter response statistics
Image appearance descriptors are needed for different computer vision applications dealing with, for example, detection, recognition and classification of objects, textures, humans, etc. Typically, such descriptors should be discriminative to allow for making the distinction between different classes, yet still robust to intra-class variations due to imaging conditions, natural changes in appea...
متن کاملBlur and Contrast Invariant Fast Stereo Matching
We propose a novel approach for estimating a depth-map from a pair of rectified stereo images degraded by blur and contrast change. At each location in image space, information is encoded with a new class of descriptors that are invariant to convolution with centrally symmetric PSF and to variations in contrast. The descriptors are based on local-phase quantization, they can be computed very ef...
متن کاملImage Deconvolution by Means of Frequency Blur Invariant Concept
Different blur invariant descriptors have been proposed so far, which are either in the spatial domain or based on the properties available in the moment domain. In this paper, a frequency framework is proposed to develop blur invariant features that are used to deconvolve a degraded image caused by a Gaussian blur. These descriptors are obtained by establishing an equivalent relationship betwe...
متن کاملOn Affine Invariant Descriptors Related to SIFT
Using a classical result on algebraic invariants of the unimodular group, we present in this paper some basic geometric affine invariant quantities, and we use them to construct some distinctive descriptors for object detection. Although full affine invariance cannot be guaranteed due to noncommutativity of camera blur with affine maps and the domain problem (that is, the difficulty of finding ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP journal on image and video processing
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016